Deranged neuronal calcium signaling and Huntington disease.

نویسندگان

  • Ilya Bezprozvanny
  • Michael R Hayden
چکیده

Huntington disease (HD) is an autosomal-dominant neurodegenerative disorder that primarily affects medium spiny striatal neurons (MSN). HD is caused by polyglutamine (polyQ) expansion (exp) in the amino-terminal region of a protein huntingtin (Htt). The connection between polyQ expansion in Httexp and MSN neurodegeneration remains elusive. Here we discuss recent data that link polyQ expansion in Httexp and deranged Ca2+ signaling in MSN neurons. Experimental evidence indicates that (1) Ca2+ homeostasis is abnormal in mitochondria isolated from lymphoblasts of HD patients and from brains of the YAC72 HD mouse model; (2) Httexp leads to potentiation of NR1/NR2B NMDA receptor activity in heterologous expression systems and in MSN from YAC72 HD mouse model; and (3) Httexp binds to the type 1 inositol 1,4,5-trisphosphate receptor (InsP3R1) carboxy-terminus and causes sensitization of InsP3R1 to activation by InsP3 in planar lipid bilayers and in MSN. Based on these results we propose that Httexp-induced cytosolic and mitochondrial Ca2+ overload of MSN plays an important role in the pathogenesis of HD and that Ca2+ signaling blockers may play a beneficial role in treatment of HD.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deranged calcium signaling and neurodegeneration in spinocerebellar ataxia type 3.

Spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph disease (MJD), is an autosomal-dominant neurodegenerative disorder caused by a polyglutamine expansion in ataxin-3 (ATX3; MJD1) protein. In biochemical experiments, we demonstrate that mutant ATX3(exp) specifically associated with the type 1 inositol 1,4,5-trisphosphate receptor (InsP(3)R1), an intracellular calcium (Ca(2+)) rel...

متن کامل

Mechanism of ER Stress-Induced Brain Damage by IP3 Receptor

Deranged Ca(2+) signaling and an accumulation of aberrant proteins cause endoplasmic reticulum (ER) stress, which is a hallmark of cell death implicated in many neurodegenerative diseases. However, the underlying mechanisms are elusive. Here, we report that dysfunction of an ER-resident Ca(2+) channel, inositol 1,4,5-trisphosphate receptor (IP(3)R), promotes cell death during ER stress. Heteroz...

متن کامل

Calcium Signaling and Neurodegeneration

Neurodegenerative disorders, such as Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD), and spinocerebellar ataxias (SCA) are very important both for fundamental science and for practical medicine. Despite extensive research into the causes of these diseases, clinical researchers have had very limited progress and, as of now, ther...

متن کامل

Huntingtin and Huntingtin-Associated Protein 1 Influence Neuronal Calcium Signaling Mediated by Inositol-(1,4,5) Triphosphate Receptor Type 1

Huntington's disease (HD) is caused by polyglutamine expansion (exp) in huntingtin (Htt). The type 1 inositol (1,4,5)-triphosphate receptor (InsP3R1) is an intracellular calcium (Ca2+) release channel that plays an important role in neuronal function. In a yeast two-hybrid screen with the InsP3R1 carboxy terminus, we isolated Htt-associated protein-1A (HAP1A). We show that an InsP3R1-HAP1A-Htt ...

متن کامل

Huntington ́s disease and the interaction between Ca2+ and cAMP signaling pathways

Huntington disease (HD) is a neurodegenerative disease known by progressive motor, behavioral, and cognitive decline that culminates in the death. HD therapy is yet unsatisfactory. Chorea and psychiatric symptoms usually respond to pharmacotherapy. Recent advances in pathogenesis and newer biomarkers have promoted some progresses in HD therapy. It was suggested that an imbalance in the intracel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemical and biophysical research communications

دوره 322 4  شماره 

صفحات  -

تاریخ انتشار 2004